Acest site necesită browser-ul să fie activat JavaScript.
Vă rugăm să activați JavaScript și să reîncărcați această pagină.
Site-ul necesită browser-ul pentru a activa cookie-urile pentru a se autentifica.
Vă rugăm să activați cookie-urile și reîncărcați această pagină.
Alice ZhengFeature Engineering for Machine Learning: Principles and Techniques for Data Scientists, Paperback
la comenzi de peste 199 lei
Conform Termeni și condiții
Înainte de plată
Contributor(s):
Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you'll learn techniques for extracting and transforming features--the numeric representations of raw data--into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.
Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.
You'll examine:
Am aprecia părerea ta! Evaluați acest produs
Nu există comentarii de la alți utilizatori.