Acest site necesită browser-ul să fie activat JavaScript.
Vă rugăm să activați JavaScript și să reîncărcați această pagină.
Site-ul necesită browser-ul pentru a activa cookie-urile pentru a se autentifica.
Vă rugăm să activați cookie-urile și reîncărcați această pagină.
Jun ChenDetecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading, Paperback
la comenzi de peste 199 lei
Conform Termeni și condiții
Înainte de plată
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics:
It will be of great interest to researchers in computational finance, machine learning and data science.
About the Authors
Jun Chen
Edward P K Tsang
Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.
Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002. He is a Visiting Professor at University of Hong Kong.
Am aprecia părerea ta! Evaluați acest produs
Nu există comentarii de la alți utilizatori.